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Abstract 13 

Changes in climate extremes affect socioeconomics and natural systems in northeastern 14 

Argentina (NEA) and may increase its vulnerability leading to unprecedented disasters. This study 15 

investigates the long-term changes and interannual variability of daily temperature and precipitation 16 

climate extremes and assesses to what extent global reanalyses reproduce the observed variability in 17 

the recent past. Datasets include quality-controlled observations (1963-2013) and ERA-Interim and 18 

NCEP2 reanalyses (1979-2011). Climate extremes are characterized spatially and temporally by 15 19 

indices proposed by the Expert Team on Climate Change Detection and Indices. The leading modes of 20 

the area-averaged index time series were obtained by means of a Singular Spectrum Analysis, while the 21 

spatial distribution of mean changes was estimated by fitting nonparametric linear trends to each index 22 

time series. 23 

The results show that temperature extremes are changing toward warmer conditions. The 24 

number of warm days has been increasing since 1990 while the number of cold days has been 25 

decreasing. Warm and cold nights show a significant signal of warming that seems to be stabilizing in 26 

recent decades. Heat waves almost double the frequency and duration of cold waves, and the duration 27 

of heat waves increased while cold spells decreased in last decades. Longer heat waves are related to 28 

longer dry spells. On the other hand, the number of frost days remained stable although they exhibit 29 

high interannual and decadal variability. As well, intense precipitation events in most of the region 30 

increased steadily since 1970. The annual maximum amount of 1-day and 5-day precipitation events 31 

increased from the 1970s to the 2000s, stabilizing in recent years. 32 

The ERA-Interim and NCEP2 reanalyses represent climate extremes with different success. ERA-33 

Interim can recognize temperature extremes in time and space, while the older NCEP2 presents 34 

systematic positive errors and has some difficult to replicate the interannual variability of the number 35 

of summer days. Both reanalyses reproduce dry spells and the annual maximum 5-day precipitation 36 

with large biases, which are particularly noticeable at each observation station. Although reanalyses 37 
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would be expected to add information for climate extremes in areas of scarce observations like 38 

northeastern Argentina, they still need to be used with great caution and only as a complement to 39 

observations, especially in studies focusing on precipitation extremes. 40 

 

Keywords: climate extremes; intense precipitation; wet/dry spells; frost days; heat waves; reanalyses. 41 

Highlights: 42 

• Since the 1990s, warm days are increasing while cold days are decreasing. 43 

• The duration of heat waves has increased and cold spells have decreased in last decades.  44 

• Intense precipitation increased steadily since the 1970s. 45 

• ERA-Interim reanalysis can describe broad features of area-averaged temperature extremes. 46 

• ERA-Interim and NCEP2 reanalyses have difficulty in reproducing precipitation extremes. 47 
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1. Introduction 48 

Extreme weather and climate events affect ecosystems, disrupt food production and water 49 

supply, and negatively impact human settlements causing morbidity and mortality (Field et al., 2014).  50 

Increases in extreme events, including their frequency, intensity, spatial extent, and duration may 51 

further affect the vulnerability and exposure of ecosystems and human systems. Evidence suggests that 52 

temperature extremes have changed toward warmer conditions over most land areas of the world 53 

during the past 60 years (Seneviratne et al., 2012; Donat et al., 2013). The number of warm days and 54 

warm nights has increased, the number of cold days and cold nights has decreased, and either the 55 

length or number of heat waves has increased at the global scale (Seneviratne et al., 2012 and 56 

references therein). Although not as statistically significant as for temperature, the number of heavy 57 

precipitation events over land areas has increased (Alexander et al., 2006; Seneviratne et al., 2012) and 58 

are far more common than regions where the number has decreased (Donat et al., 2013). The changes 59 

in extreme events may impact negatively the sustainability of economic development and living 60 

conditions requiring the development of coping mechanisms to manage the associated risks (CCSP, 61 

2008). Thus, the success in designing coping strategies depends on our understanding of the low 62 

frequency climate changes affecting extremes (Klein Tank, 2009). 63 

In South America during the last decade (2007-2016), extreme weather and climate events have 64 

led to about 7,000 fatalities, more than 58 million people affected, and estimated losses of US$ 24 65 

billion (Guha-Sapir et al., 2015). Frequent and intense precipitation extremes have favored recurrent 66 

floods in urban and rural areas (Magrin et al., 2014). According to the IPCC (2012) and Stocker et al. 67 

(2013), extreme climate events in this continent have increased in the last decades as reflected in 68 

changes in daily extremes of precipitation and temperature (e.g., Haylock et al., 2006; Rusticucci, 2012 69 

and Skansi et al., 2013 and references therein). Towards the northern part of the South American 70 

continent not enough evidence was found to assume that changes are part of a trend (Seneviratne et 71 

al., 2012). However, towards southeastern South America a moderate confidence of a warming in 72 
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temperature extremes and an increase of intense precipitation events has been detected (e.g., 73 

Fernández-Long et al., 2013; Cavalcanti et al., 2015; Carril et al., 2016 and references therein). Also 74 

consistent with global trends, the number of cold nights has decreased and warm nights has increased, 75 

the number of  warm days has increased and cold days have become fewer (Rusticucci et al., 2016). 76 

Northeastern Argentina has great economic and demographic significance as it concentrates 77 

most of the agricultural production and the population of the country. Agricultural activities are of key 78 

importance for the region’s food security, helping to drive its economy, and being a main source of 79 

livelihood for the rural population (ECLAC, 2015). Hence, climate extremes affecting agriculture 80 

activities can play a significant role in the rise and fall of poverty rates. The region is particularly 81 

vulnerable to climate extremes due to its high population density and important economic activities. 82 

During the last 10 years, Argentina experienced about 16 floods or landslides with more than 100 83 

deaths (Guha-Sapir et al., 2015). Heat waves and cold spells have increased urban mortality rates 84 

(Hardoy and Pandiella, 2009), and have affected seasonal crops by decreasing their yields (Verón et al., 85 

2015). There is high statistical confidence that changes in climate extremes are affecting human health 86 

by increasing morbidity, mortality, and disabilities, and through the emergence of diseases in previously 87 

non-endemic regions (e.g., Winchester and Szalachman, 2009; Carbajo et al., 2012). Further research is 88 

expected to provide relevant information that can assist in the elaboration of policies related to 89 

adaptation and mitigation of the effects of climate extremes. 90 

This study has two main objectives: first, to investigate the long-term changes and interannual 91 

variability of daily temperature and precipitation extremes, and second, under the assumption that 92 

reanalysis products should add valuable information in regions of scarce observations, to assess to what 93 

extent they reproduce the observed variability in the recent past over northeastern Argentina. The 94 

structure of the article follows: section 2 introduces the regional context. Section 3 presents the 95 

datasets used and the methodological approach. Section 4 examines temperature-related extremes 96 
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while section 5 analyzes precipitation-related extremes. Section 6 presents a discussion and section 7 97 

summarizes the concluding remarks. 98 

 

2. Regional Context 99 

This research focuses on northeastern Argentina (NEA), a region that covers the fertile soils of 100 

the Pampas and Chaco plains (Fig. 1a). These plains extend for 1,200,000 km2 with a mostly flat relief 101 

and a slight slope from the northwest to the southeast (NGI, 2015). Regional topographic features favor 102 

a markedly latitudinal thermal gradient (Figs. 1d and 1e), with the higher temperatures towards the 103 

north (the equatorial side in the SH) and decreasing towards the south. Annual average maximum 104 

temperature ranges from 20 °C toward the south to 30 °C toward the north while annual average 105 

minimum temperature presents a less pronounced thermal gradient (10 °C to 18 °C).  106 

Precipitation towards the northern sector of the domain north of about 20° S (Fig. 1f) is driven 107 

by the South American Monsoon System, a fundamental climate feature that controls the austral 108 

summer circulation over South America (Zhou and Lau, 1998; Nogués-Paegle et al., 2002; Marengo et 109 

al., 2012; Carvallo and Cavalcanti, 2016). The wet season is characterized by an anticyclone located 110 

approximately over the Bolivian Altiplano (Lenters and Cook, 1997), and by the Chaco thermal low, 111 

centered over northern Argentina (Nogués-Paegle et al., 2002; Marengo et al., 2012). At a more 112 

continental scale, the system extends over the ocean in what is known as the South Atlantic 113 

Convergence Zone (SACZ) (Kodama, 1992). The South American Low-Level Jet east of the Andes (SALLJ; 114 

Virji 1981; Berbery and Collini, 2000) is a key feature of the circulation that remarkably is present 115 

throughout the year (Berbery and Barros, 2002). The SALLJ that extends from the southwestern 116 

Amazon to southeastern South America is recognized as a key factor that activates convection and 117 

precipitation in the subtropical plains of South America (Nogués-Paegle et al., 2002). 118 
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Mesoscale Convective Systems (MCSs) over Northeastern Argentina during the warm season 119 

(October-April) are frequent and account for a large percentage of the total precipitation (Laing and 120 

Fritch, 2000). During the austral cold season (May-September), the most important contribution in this 121 

region is related to activity at synoptic scale of mean latitudes (Vera et al., 2002). The conjunction of all 122 

these climate-forcing factors results in precipitation being distributed during the course of the year 123 

(Berbery and Barros, 2002). The resulting spatial pattern of the annual mean precipitation depicts a 124 

west-east gradient ranging from 900 mm/year towards the west to more than 1500 mm/year towards 125 

the northeast, as shown in Fig. 1f. 126 

According to the literature, the variability of the southeastern South America climate at 127 

interannual to multidecadal time scales results from the superposition of several large-scale 128 

phenomena. El Niño Southern Oscillation (ENSO) is the major source of interannual variability: El Niño 129 

conditions might favor wet anomalies, intensify warms spells and reduce frost days while La Niña 130 

conditions might favor dry anomalies and increased cold events (Müller et al., 2000; Grimm and 131 

Tedeschi, 2009; Rusticucci et al., 2016). The Southern Annular Mode, and the South Atlantic and Pacific 132 

Oceans also modulate the interannual variability of extreme temperature frequencies (Barrucand et al., 133 

2008; Loikith et al., 2017). Pacific decadal variability (PDV), the Atlantic Ocean and the SACZ are the 134 

main climate forcing factors of the southeastern South America climate variability on interannual to 135 

multidecadal time scales (Kayano and Andreoli, 2007; Mo and Berbery, 2011; Barreiro et al., 2014; 136 

Grimm et al., 2016). 137 
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Fig. 1. (a) Topography map of South America and the main countries of southern South America. 138 

The study region in northeastern Argentina is highlighted with a black rectangle. (b) Spatial 139 

distribution of stations with long records of high-quality datasets of observed precipitation and 140 

temperature (description in Table 1) and the Thiessen polygons used to compute the areal-141 

average of the variables. (c) Grid resolution of the reanalyses: ERA-Interim (blue full lines) and 142 

NCEP2 (red dashed lines). Climatological mean values (1963-2013 period) of the (d) annual 143 

average maximum temperature, (e) annual average minimum temperature and, (f) annual 144 

precipitation.  145 
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3. Methodology 146 

3.1 Datasets 147 

In-situ observations of daily precipitation as well as daily maximum and minimum temperatures 148 

for 1963-2013 were used for the present study. They were provided by the Argentine National Weather 149 

Service and the Argentine National Institute of Agricultural Technology. About 36 stations were selected 150 

for the quality and extent of the records (see Fig. 1b and other details in Table 1). To be included, 151 

stations were required to exceed a threshold of 90% of days with data availability. As shown in Table 1, 152 

most of the selected stations (29 out of 36) had more than 95% of days with data. Missing values were 153 

filled using the normal ratio method to interpolate from nearby stations (Young et al., 1992). A linear 154 

regression approach was applied in exceptional cases when there was only one neighboring station 155 

with data in the period to be filled. Neighboring stations were selected according to their maximum 156 

correlation with the station to be completed. Finally, a quality control of the completed time series was 157 

carried out to identify non-systematic errors, ensure the absence of outliers and the internal 158 

consistency of the records (the latter assessed with the RHtestsV3 method developed by Wang et al., 159 

2010). 160 

The ERA-Interim (Dee et al., 2011) and the NCEP-DOE Reanalysis 2 (NCEP2, Kanamitsu et al., 161 

2002) were used for the common period from 1979 to 2011. The ERA-Interim is used on a regular grid 162 

at 0.5° spatial resolution, while the NCEP2 spatial resolution is 1.875° latitude x 1.904° longitude (see 163 

Fig. 1c). The reanalyses offer a full coverage on areas with scarce gauge stations like the northwest 164 

portion of the domain (see Fig. 1b). 165 
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Table 1. Meteorological stations used in this study with information in the 1963-2013 period.  166 

 Station Latitude  Longitude  Missing Data (%) 

1 Las Lomitas -24.70 -60.58 0.83 

2 Iguazú airport -25.73 -54.47 5.96 

3 Formosa airport -26.20 -58.23 0.28 

4 El Colorado -26.3 -59.38 8.97 

5 Roque Sáenz Peña -26.87 -60.45 4.30 

6 Las Breñas -27.10 -61.10 2.35 

7 Posadas airport -27.36 -55.96 3.41 

8 Resistencia airport -27.45 -59.05 6.51 

9 Corrientes airport -27.45 -58.77 5.53 

10 Cerro Azul -27.65 -55.43 3.91 

11 Bella Vista -28.43 -58.92 2.03 

12 Mercedes -29.17 -58.02 6.68 

13 Reconquista airport -29.18 -59.70 1.80 

14 Paso de los Libres airport -29.68 -57.15 2.90 

15 Ceres airport -29.88 -61.95 5.83 

16 Monte Caseros airport -30.26 -57.65 0.33 

17 Rafaela -31.18 -61.55 0.84 

18 Concordia airport -31.30 -58.02 0.18 

19 Sauce Viejo airport -31.70 -60.82 0.50 

20 Paraná airport -31.78 -60.48 0.14 

21 Concepción del Uruguay -32.48 -58.35 4.16 

22 Oliveros -32.55 -60.85 0.47 

23 Marcos Juárez -32.68 -62.12 0.12 

24 Rosario airport -32.92 -60.78 0.78 

25 Gualeguaychú airport -33.00 -58.62 0.79 

26 San Pedro -33.68 -59.68 5.40 

27 Pergamino -33.93 -60.55 4.00 

28 Junín airport -34.55 -60.92 0.02 

29 San Miguel -34.55 -58.73 2.54 

30 Aeroparque airport -34.57 -58.42 1.82 

31 Buenos Aires -34.58 -58.48 0.09 

32 Castelar -34.60 -58.67 0.21 

33 Ezeiza airport -34.82 -58.53 3.11 

34 La Plata airport -34.96 -57.90 3.83 

35 Punta Indio -35.37 -57.28 4.15 

36 9 de Julio airport -35.45 -60.88 1.25 
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3.2 Indices of extreme climate 167 

The more relevant NEA extreme events are those that involve precipitation and temperature. 168 

Dry and wet spells, as well as frosts, are most critical for agriculture. Heat waves are also relevant for 169 

human wellbeing. To examine these phenomena, we employ a subset of ETCCDI2 indices that 170 

characterize the intensity, duration and frequency of climate events (Klein Tank et al., 2009 and Zhang 171 

et al., 2011). The core set of ETCCDI indices, computed from daily temperature and precipitation, was 172 

developed to detect and attribute changes and evaluate long-term variability in climate extremes. 173 

ETCCDI indices are statistically robust, can cover a wide range of climates and have a high signal-to-174 

noise ratio. Of the 27 core indices proposed by ETCCDI, we analyze ten that are temperature-based and 175 

five based on precipitation as the most relevant for extreme events that have greatest impact in NEA 176 

(see Table 2). The indices are categorized as absolute, duration, or threshold indices (Sillman et al., 177 

2013): (i) absolute indices represent the intensity of extreme events, for instance, the annual maximum 178 

precipitation amounts per day; (ii) duration indices describe the length in days of wet/dry spells, or 179 

warm/cold spells; lastly, (iii) threshold indices count the number of days when a threshold is exceeded, 180 

characterizing the frequency of extreme events. Percentile-based threshold indices allow for spatial 181 

comparisons because they are independent of the spatial variability and they sample the same part of 182 

the probability distribution of a variable at each location (Zhang et al., 2011). In this study, a 183 

bootstrapping approach (Zhang et al., 2005) was applied to remove inhomogeneities near the beginning 184 

and end of the period in percentile-based indices, avoiding possible biases in the trend estimation. 185 

The indices were evaluated in space and time. The most recent normal period of the time 186 

series, 1981-2010, was selected as the base period for the calculation of percentile indices and to 187 

compute anomalies of the other indices (in agreement with Zhang et al., 2011 and Skansi et al., 2013). 188 

We have verified that the choice of a different normal period (e.g. 1971–2000) and even the full data 189 

                                                           

2  World Meteorological Organization (WMO) Commission for Climatology (CCl)/CLIVAR/ JCOMM Expert Team on Climate 

Change Detection and Indices (ETCCDI) 
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period (1963-2013) has negligible effects on the results with changes in the indices of less than 2%. To 190 

depict their spatial distribution, the mean climatology values of the observation-based and reanalysis-191 

based indices were estimated as the average over their corresponding available periods, i.e., 1963-2013 192 

and 1979-2011 respectively.  193 

Area-averaged time series were computed using the Thiessen Polygons method (Okabe et al., 194 

2000) in each time step to take into account the uneven spatial distribution of the stations (see Fig. 1b). 195 

This method calculates station weights based on the relative areas of each measurement station in the 196 

Thiessen polygon network (Fig. 1b). The individual weights are multiplied by the station observation 197 

index and the values are summed to obtain the areal average index in each time step.  198 
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Table 2. ETCCDI indices used in this study, adapted from Donat et al. (2013) and Sillman et al. 199 

(2013). TXij and TNij are the daily maximum and minimum temperature respectively on day i in period j 200 

(where period is year except for DTR that is season). TXin90 or TXin10 (TNin90 or TNin10) are the calendar 201 

day 90th or 10th percentile of daily maximum (minimum) temperature calculated for a 5-day window 202 

centered on each calendar day n from the base period 1981-2010. 203 

Temperature-based Indices 

 Index Index Name Index definition Unit 

F
re

q
u

e
n

cy
 

TX90p Warm days Percentage of annual days when TXij > TXin90 % of days 

TX10p Cold days  Percentage of annual days when TXij < TXin10 % of days 

TN90p Warm nights Percentage of annual days when TNij > TNin90 % of days 

TN10p Cold nights Percentage of annual days when TNij < TNin10 % of days 

SU25 Summer days Annual number of days when TXij > 25 °C days 

TR Tropical nights Annual number of days when TNij > 20 °C days 

FD Frost days Annual number of days when TNij < 0 °C days 

In
te

n
si

ty
 

DTR 

Diurnal 

temperature 

range 

Mean difference between daily maximum and 

daily minimum temperature: If I represents the 

number of days in j, then ���� =

 ∑ ��	� − ��	�
�
	� �⁄  

°C 

D
u

ra
ti

o
n

 

WSDI 
Warm spell 

duration indicator 

Annual number of days with at least 6 

consecutive days when TXij > TXin90 
days 

CSDI 
Cold spell 

duration indicator 

Annual number of days with at least 6 

consecutive days when TNij < TNin10 
days 

Precipitation-based Indices 

In
te

n
si

ty
 

RX1day 
Max 1-day 

precipitation 
Annual maximum 1-day precipitation amount mm 

RX5day 
Max 5-day 

precipitation 

Annual maximum consecutive 5-day 

precipitation amount 
mm 

SDII 
Simple daily 

intensity index 

Annual total precipitation divided by the number 

of wet days (i.e., when precipitation ≥ 1 mm) 
mm/day 

D
u

ra
ti

o
n

 

CWD 
Consecutive wet 

days 

Maximum annual number of consecutive wet 

days (i.e., when precipitation ≥ 1 mm) 
days 

CDD 
Consecutive dry 

days 

Maximum annual number of consecutive dry 

days (i.e., when precipitation < 1 mm) 
days 
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3.3 Trends and variability modes of climate extreme indices 204 

A Singular Spectrum Analysis (Ghil et al., 2001; Wilks, 2006) was employed to obtain the trends 205 

and leading modes of the area-averaged time series of each index. We focus on nonlinear trends, which 206 

allow assessing the temporal evolution of long-term changes in extreme climate events. The SSA 207 

method also detects oscillatory modes that can provide important information of the temporal 208 

variability of the climate-related extremes.  209 

The SSA method describes the variability of a time series by its eigenvalue decomposition into 210 

temporal-empirical orthogonal functions (T-EOFs, eigenvectors) and temporal-principal components (T-211 

PCs). Each T-PC represents a filtered version of the original time series with a portion of the variance 212 

associated with its corresponding eigenvalue. A quasi-oscillatory structure can be found when two 213 

consecutive eigenvalues are nearly equal and their associated T-PCs are in quadrature. A nonlinear 214 

trend is obtained when the estimation error of a leading eigenvalue, here computed following Ghil and 215 

Vautard (1991), does not overlap with other eigenvalues and its corresponding T-PC is slowly varying 216 

and uncorrelated with other T-PCs (Vautard, 1995; Wilks, 2006). Finally, a significance test against a red 217 

noise null-hypothesis using a Monte Carlo method (Allen and Smith, 1996) with an ensemble of 1,000 218 

independent realizations was applied to distinguish significant T-PCs at the 95% confidence level. 219 

The choice of the window length M in the SSA is crucial since it limits the longer periods that the 220 

SSA can resolve. Window length should not exceed one third of the time series length to adequately 221 

represent cycles between M/5 and M (Vautard, 1995). Considering the length of the data period 222 

available (N = 51 years), we use a window length M = 10 years. Thus, in this study, interannual 223 

variability represents the spectrum between 2 and 10 years (following Krepper and García, 2004 and 224 

Krepper et al., 2006). With the window length of M = 10 years chosen here, the SSA-method cannot 225 

identify periods at decadal-to-multidecadal time scales. Our analysis will thus focus on nonlinear trends 226 

and frequencies of interannual variability cycles. 227 
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In cases when the SSA method does not clearly detect nonlinear trends, i.e. when the errors of 228 

the eigenvalues overlap preventing the separation of a significant trend signal, a 10-yr moving average, 229 

consistent with M=10 years, was used to represent the low frequency variability. Ten-year moving 230 

averages filter signals with frequencies higher than 10 years and represent in a simpler way the low 231 

frequency behavior of the time series.  232 

Changes in extreme climate events at each station were assessed by fitting linear trends to the 233 

indices in the 51-year period. The magnitudes of the trends were computed adapting the 234 

nonparametric Kendall’s tau based slope estimator (Sen, 1968) and using the method originally 235 

proposed by Zhang et al. (2000) and later refined by Wang and Swail (2001). Trends of all indices were 236 

tested for statistical significance at the 95% confidence level following the approach of Bronaugh and 237 

Werner (2013). 238 

 

3.4 Reanalyses skill evaluation 239 

The skill of ERA-Interim and NCEP2 to reproduce temperature and precipitation extremes is 240 

assessed, first, contrasting the spatial and temporal climatology fields against observations, and second, 241 

using objective statistical metrics. The metrics used are the Pearson correlation coefficient (r), the mean 242 

bias error (MBE), and the root mean square error (RMSE). A definition of these metrics can be found in 243 

Déqué (2012). 244 

Northeastern Argentina presents an irregular distribution of the observation stations, as noted 245 

above (see Fig. 1b). Therefore, comparisons between grid cell products with station observations 246 

necessarily involve interpolations, which introduces new errors (Wang and Zeng, 2012). To minimize 247 

these interpolation errors, we follow the approach in Wang and Zeng (2012), Jones et al. (2016), Yang 248 

and Kim (2017) and Zhang et al. (2017) by comparing data from each station with those from a 249 

reanalysis grid cell covering this station. It should be noted that given the lack of topographic 250 
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characteristics of the region (see Fig. 1a), there are no sharp gradients and the variations of the climatic 251 

variables are largely unaffected by their spatial resolution. 252 

The ability of the reanalyses to represent temperature extremes is evaluated by means of three 253 

fixed-threshold indices: summer days, tropical nights and frost days (SU25, TR and FD respectively; see 254 

their definitions in Table 2). These indices were selected for two reasons: first, they avoid the 255 

complexity of percentile-based indices, which are difficult to replicate in reanalysis (estimated but not 256 

shown; see also Sillman et al., 2013), and second, because they are relevant to the agro-industrial 257 

activities in the region. For precipitation extremes, the annual maximum 5-day amounts (RX5day) and 258 

the annual maximum consecutive dry days (CDD) are evaluated (see the indices definitions in Table 2). 259 

As suggested by Sillman et al. (2013), reanalyses tend to underestimate the magnitude of extreme 260 

precipitation events characterized by the annual maximum 1-day amount (RX1day, Table 2), but they 261 

may have greater ability to reproduce the CDD and RX5day because dry conditions and 5-day 262 

precipitation events are usually of larger spatial scale than daily extreme precipitation events. 263 
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4. Temperature-related climate extremes 264 

 

4.1 Maximum-temperature frequency extremes 265 

The frequency of days per year when the maximum temperature exceeds the 90th percentile 266 

(TX90p) will be referred to as warm days. The frequency of days when the maximum temperature is 267 

below the 10th percentile (TX10p) will be referred to as cold days. The climatology of warm days (Fig. 268 

2a) has an almost longitudinal gradient that ranges from 14% of days per year towards the west to 10% 269 

towards the northeast. The warm days are influenced by interannual variability with a periodicity close 270 

to 9 years (Table 3) which explains 30% of the variance of the total time series. Fig. 2b (and Table 3) also 271 

reveals a nonlinear trend of the frequency of warm days, which had slightly decreased before the 272 

1990s, but since then it has experienced a steady increase of about 5%. Despite the dispersion among 273 

the trends of TX90p for all stations (thin lines in Fig. 2b), they exhibit a common behavior. The spatial 274 

distribution of the trends in Fig. 2c reveals that most stations have increases of warm days, particularly 275 

towards the northeast. Only a few stations (7 out of 36) experienced a decrease, and it was non-276 

significant.  277 

Days with the maximum temperature in the lowest 10th percentile (cold days), shown in Fig. 2d, 278 

are less frequent than warm days and almost uniform for the region, with a slight increase towards the 279 

east from 9% to 11% of cold days in a year. The area-averaged frequency of colds days presented in Fig. 280 

2e reveals a decrease from 10% to 7.5% of days per year since about 1990 with an important 281 

interannual variability. The spatial distribution of the linear trends presented in Fig. 2f shows the largest 282 

decrease of cold days towards the east, where cold days are more frequent.  283 
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Table 3. Summary of the main variability modes of temperature-related extremes found with SSA. 284 

SSA Results of Temperature-based Indices 

 Index Index Name Components 
Trend or Dominant 

Period (year/cycle) 

Explained 

variance (%) 

F
re

q
u

e
n

cy
 

TX90p Warm days 
T-PC1 Trend 27 

T-PC2 and T-PC3 8.8 30.5 

TX10p Cold days  T-PC1 Trend 18 

TN90p Warm nights 
T-PC1 Trend 18 

T-PC2 and T-PC3 4 27 

TN10p Cold nights 
T-PC1 Trend 36 

T-PC2 and T-PC3 4 28 

FD Frost days T-PC1 and T-PC2 4 42.5 
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Warm spell 
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T-PC1 Trend 20 
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T-PC1 Trend 43.5 
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Fig. 2. Frequency of maximum temperature (daytime) climate extremes characterized by warm days 285 

(TX90p) and colds days (TX10p), defined as the percentage of annual days when Tmax > 90th 286 

percentile and Tmax < 10th percentile, respectively. Left panels (a, d): climatological mean values in 287 

the 1963-2013 period. Middle panels (b, e): the temporal evolution of the area-averaged indices and 288 

their trends. Right panels (c, f): the spatial distribution of the linear trends. Warm colors (yellow to 289 

red) indicate a shift toward warmer conditions while cold colors (light blue to blue) toward colder 290 

conditions. Stations highlighted with a black dot indicate a significant linear trend, at least at the 95% 291 

confidence level. 292 

293 
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4.2 Minimum-temperature frequency extremes 294 

Figure 3 presents the indices characterizing the frequency of minimum-temperature extremes. 295 

The indices TN90p and TN10p (Table 2) describe respectively the percentage of nights when minimum 296 

temperature was in the 90th percentile (warm nights) and the percentage of nights when it was in the 297 

lowest 10th percentile (cold nights). The annual mean climatology of warm nights (Fig. 3a) presents 298 

values between 9% and 12% of days without a clear spatial pattern. Fig. 3b indicates that warm nights 299 

exhibit an area-averaged positive nonlinear trend, more evident from the late 1960s to the early 1980s. 300 

From 1980 to 2013, the trend is also positive but with lower magnitude, being strongly influenced by 301 

interannual variability. It is of interest to examine the individual stations trends (thin lines). They exhibit 302 

smaller dispersion around the 1980s, with a marked dispersion increase during latter years. Aside from 303 

the trends, a 4-yr mode of variability explains almost 30% of the TN10p and TN90p variances (see Table 304 

3). Fig. 3c shows that the number of warm nights presents the greatest increases towards the north (1% 305 

to 2% of days per decade), with 11 out of 19 stations with significant rising trends. Only a few stations 306 

(about 6) had a non-significant negative trend.  307 

The frequency of cold nights (Fig. 3d) ranges from 9% to 13% of annual days, again without a 308 

well-defined spatial pattern. Their mean trend, presented in Fig. 3e, shows that there was about a 5% 309 

decrease in the frequency of cold nights from the 1960s to 1980s, that is, at the same time when an 310 

increase of about 3% was observed in the frequency of warm nights (Fig. 3b). According to Fig. 3f, the 311 

decrease in cold nights occurred in the whole region, with 21 stations having significant trends at least 312 

at the 95% confidence level.  313 
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Fig. 3. Frequency of minimum temperature (nighttime) climate extremes characterized by warm 314 

nights (TN90p) and colds nights (TX10p), defined as the percentage of annual days when Tmin > 90th 315 

percentile and Tmin < 10th percentile, respectively. Left panels (a, d): climatological mean values in 316 

the 1963-2013 period. Middle panels (b, e): the temporal evolution of the area-averaged indices and 317 

their trends. Right panels (c, f): the spatial distribution of linear trends. Warm colors (yellow to red) 318 

indicate a shift toward warmer conditions while cold colors (light blue to blue) toward colder 319 

conditions. Stations highlighted with a black dot indicate a significant linear trend, at least at the 95% 320 

confidence level. 321 
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4.3 Frost events and diurnal temperature range 322 

Many crops are sensitive to the number of frost days (FD) and to the diurnal temperature range 323 

(DTR) defined in Table 2. These indicators of temperature-related extremes provide useful information 324 

for agricultural planning. Fig. 4 displays the climatology, areal-averaged temporal evolution and spatial 325 

distribution of local trends of these indicators. Consistent with the minimum temperature climatology 326 

(Fig. 1e), the frequency of frost days varies latitudinally, decreasing from almost 25 days per year 327 

towards the south to less than 5 days per year to the north (Fig. 4a). Frost days do not have a noticeable 328 

trend (Figs. 4b and 4c), but they do exhibit interannual and decadal variability. On interannual scales, a 329 

4-yr mode is consistent with the cycle discussed for minimum-temperature extremes, particularly in 330 

cold nights, explaining 42.5% of the FD variance (Table 3).  331 

During austral summer, the diurnal temperature range (DTRs) varies between 10 °C and 14 °C 332 

with highest values towards the west (Fig. 4d). The nonlinear area-averaged SSA-trend in Fig. 4e 333 

indicates that DTRs decreased substantially between the 1960s and 1970s, and remained constant from 334 

the 1980s to the present. The local trends shown in Fig. 4f exhibit negative values over most of the 335 

region, with largest negative trends of up to 0.5 °C in magnitude per decade towards the south. Almost 336 

negligible positive trends (<0.1 °C) are found in very few stations, without any clear pattern.  337 

During winter, the diurnal temperature range (DTRw) in Fig. 4g has a similar pattern as in 338 

summer, ranging from 14 °C towards the west to 9 °C towards the east. Changes in time of the area-339 

averaged DTRw (Fig. 4h) reveal a decrease in the earlier period and a continued increase from the 340 

1990s to the present. Fig. 4i suggests that the entire region experienced an increase in the DTR, with 28 341 

out of 36 stations having positive trends.  342 
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Fig. 4. Number of frost days (FD, first row) and the diurnal temperature range during summer (DTRs, 343 

second row) and winter (DTRw, third row). Left panels (a, d, g): climatological mean values in the 344 

1963-2013 period. Middle panels (b, e, h): the temporal evolution of the area-averaged indices and 345 

their trends. Right panels (c, f, i): the spatial distribution of linear trends. Warm colors (yellow to red) 346 

indicate a shift toward warmer conditions wile cold colors (light blue to blue) toward colder 347 

conditions. Stations highlighted with a black dot indicate a significant linear trend, at least at the 95% 348 

confidence level. 349 
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4.4 Duration of warm and cold spells 350 

Agriculture and human settlements may be severely affected by heat and cold waves. The warm 351 

spell duration indicator (WSDI) is defined as the annual count of days with at least six continuous days 352 

when maximum temperature exceeds the 90th percentile (see Table 2). The index for cold waves follows 353 

an equivalent definition, as it corresponds to the annual count of days with at least six continuous days 354 

that have a minimum temperature within the 10th percentile. Note that in principle WSDI and CSDI are 355 

not necessarily related to latitudinal changes, since they account for the number of days exceeding a 356 

percentile-threshold. Yet, some spatial structures can be identified. Figs. 5a-c present the mean annual 357 

frequency, duration and area-averaged temporal evolution of warm spells. It can be seen that heat 358 

waves are more frequent (Fig. 5a) but of shorter duration (Fig. 5b) towards the north, where there is up 359 

to 70% of chance of a heat wave per year with a duration of about 8 to 12 days. Towards the south, 360 

heat waves are less frequent but can last longer, up to about 16 days. The evolution of WSDI shown in 361 

Fig. 5c indicates that warm spell duration slightly decreased during the first half of the period, and then 362 

increased from the 1990s to present. The highest anomaly value of the WSDI was registered in 2008 363 

with an average of more than 20 consecutive days, when the whole region experienced a severe 364 

drought and heat wave (Müller et al., 2014; Rusticucci et al., 2015). Indeed, some stations in the south-365 

center registered WSDI of more than 60 days. 366 

The cold waves (CSDI) are more frequent (Fig. 5d) and of longer duration (Fig. 5e) towards the 367 

north, where minimum temperatures are higher than in the south (see Fig. 1e). For example, the 368 

probability of having one 10-day cold wave per year is 40% while towards the colder south, the 369 

probability of a cold wave is below 20%. The temporal evolution of the area-averaged CSDI (Fig. 5f) 370 

indicates that cold spell duration decreased markedly in the mid-1960s and remained at about the same 371 

level since then. A strong decadal variability is noticed throughout the period. 372 
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Fig. 5. Metrics of warm and cold spell duration (definitions are given in Table 2). Frequency of at least 373 

one event per year in (a) and (d); average duration in years with occurrence in (b) and (e); area-374 

averaged time series in (c) and (f). 375 
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4.5 Temperature-related extremes in reanalyses 376 

So far we have examined extremes as identified by station observations which do not have a 377 

complete coverage of the study region. Global reanalysis offer full data coverage in time and space 378 

based on a global model that assimilates diverse kinds of observations. Then, it is of interest to assess 379 

whether reanalysis products can be used as a complement to observations in northeastern Argentina 380 

where there is a limited coverage of gauge stations. In this sub-section, we examine the skill of two 381 

reanalysis (NCEP2 and ERA-Interim) to reproduce maximum-temperature extremes (characterized by 382 

summer days) and minimum-temperature extremes (represented by tropical nights and frost days). In 383 

addition to the already defined FD index, the summer days index (SU25) is obtained as the annual 384 

number of days when Tmax > 25 °C; and the tropical nights index (TR) is computed as the annual 385 

number of days when Tmin > 20 °C (see details on Table 2). These two indices have a latitudinal 386 

dependence with larger values towards lower latitudes.   387 

 

4.5.1 Number of summer days (SU25) 388 

The overall characteristics of the SU25 index are presented in Fig. 6a. The spatial field from the 389 

reanalysis are superimposed by circles of the corresponding values obtained from observations. A visual 390 

inspection suggests that there is similarity between the spatial pattern identified in observations and 391 

reanalyses. NCEP2, an older reanalysis product, overestimates the field of observed summer days 392 

towards the south. According to Fig. 6a (right panel), the area-averaged SU25 estimated from ERA-393 

Interim follows the temporal evolution of the observations-based SU25 with a mean bias error of only 3 394 

days and a correlation coefficient close to 0.9. However, the interannual variability of the area-averaged 395 

SU25 is not properly represented by NCEP2, with a correlation coefficient of 0.51. 396 

Statistical metrics for SU25 index computed from reanalyses at each station location are presented 397 

in Fig. 7. ERA-Interim achieves the best performance, particularly towards the south, with most 398 
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correlations to observations exceeding 0.7 (see histogram below map in Fig. 7a). In contrast, the older 399 

NCEP2 shows lower values with the most frequent correlations in the range between 0.4 and 0.6 (see 400 

histogram below map in Fig. 7b). 401 

Figures 7c and 7d show that the two reanalyses have mostly positive mean bias errors, with ERA-402 

Interim having an overestimation of up to 10 summer days in most stations. The older NCEP2 shows 403 

positive biases in the range of 10-20 days and larger. Consistently, Figs. 7e and 7f indicate that the most 404 

frequent RMSE values for ERA-Interim are less than 20 days, while those for NCEP2 exceed 20 days.  405 

 

4.5.2 Number of tropical nights (TR) 406 

The mean fields of the number of tropical nights (days with Tmin > 20 °C) in Fig. 6b show the 407 

expected increase towards the lower latitudes in both observations and reanalysis. The two reanalyses 408 

reproduce the south-north gradient but with a larger number of tropical nights towards the south. This 409 

overestimation is more noticeable in the area-averaged time series (right panel). The observed mean 410 

value of tropical nights is 56 days, while the ERA-Interim and NCEP2 have a larger number, 102 and 112 411 

days respectively. The time series shows that both reanalyses retain information about the interannual 412 

variability, giving correlation coefficients of 0.69 for ERA-Interim and 0.61 for NCEP2. 413 

Figure 8 shows that the two reanalyses represent tropical nights with less success, lower 414 

correlations, than summer days (section 4.5.1). The histogram in Fig. 8a shows that the most frequent 415 

correlation values range between 0.4 and 0.7 for ERA-Interim while NCEP2 presents correlation values 416 

less than 0.6 in the whole region (Fig. 8b). Figs. 8c and 8d show that the two reanalyses overestimate 417 

tropical nights although ERA-Interim has smaller biases than NCEP2 toward the south (MBE of 20-40 418 

days for ERA-Interim and MBE of 40-60 days for NCEP2). The histograms in Figs. 8e and 8f indicate that 419 

ERA-Interim presents common RMSE between 20 and 40 days while the most frequent RMSEs for 420 

NCEP2 are well above the 40 days. 421 
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4.5.3 Number of frost days (FD) 422 

As with the two previous indices, the number of frost days is largest towards the colder south. 423 

Fig. 6c shows that both ERA-Interim and NCEP2 tend to reproduce the spatial mean fields, but 424 

underestimate the spatiotemporal variability of frost days, particularly toward the south. Note that in 425 

the northern portion of the region, closest to the tropics, there are less than 5 frost days per year (see 426 

Fig. 6c), still, when they occur, they may severely damage crops that are of more subtropical nature. 427 

The time series of area-averaged frost days on the right panel exhibit similar variability (r = 0.86 for 428 

ERA-Interim and r = 0.87 for NCEP2) but with a systematic mean bias error of -3 days for NCEP2 and -5 429 

days for ERA-Interim. 430 

Figure 9 shows that the two reanalyses characterize frost days with similar statistical metrics: 431 

the most frequent correlation coefficients range between 0.5 and 0.7 (Figs. 9a and 9b) and MBE reaches 432 

values lesser than -5 days towards the south of the study region (Figs. 9c and 9d). This underestimation 433 

represent almost 30% of the annual mean values of frost days towards the colder south, where both 434 

reanalyses exhibit the highest RMSE values (Figs. 9f and 9g). 435 
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Fig. 6. (a) Summer days (SU25), (b) tropical nights (TR) and (c) frost days (FD) represented by the ERA-436 

Interim and NCEP2 reanalyses for the period 1979-2011 and compared with observations. Spatial 437 

distribution of mean climatology values are given in the first two panels while area-averaged time series 438 

of the Argentinian territory in the third panel of each row. 439 
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Fig. 7. Spatial distribution of the correlation coefficients (a, b), the MBE (c, d) and the RMSE (e, f) for 440 

summer days (SU25) represented by the ERA-Interim and NCEP2 reanalyses for the period 1979-2011. 441 

Histograms are provided below of each map. 442 
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Fig. 8. Spatial distribution of the correlation coefficients (a, b), the MBE (c, d) and the RMSE (e, f) for 443 

tropical nights represented by the ERA-Interim and NCEP2 reanalyses for the period 1979-2011. 444 

Histograms are provided below of each map. 445 
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Fig. 9. Spatial distribution of the correlation coefficients (a, b), the MBE (c, d) and the RMSE (e, f) for 446 

frost days represented by the ERA-Interim and NCEP2 reanalyses for the period 1979-2011. Histograms 447 

are provided below of each map. 448 
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5. Precipitation-related climate extremes 449 

5.1 Intense precipitation events 450 

We characterize the intensity of precipitation-related climate extremes using two indices (see 451 

Table 2): the annual maximum 1-day precipitation (RX1day) and the simple daily intensity index (SDII) 452 

for precipitation, which is the average accumulated precipitation in rainy days. [The RX5day was also 453 

studied, but is not shown due to its similarity to RX1day.] 454 

The spatial distribution of RX1day (Fig. 10a) has a spatial gradient increasing from the 455 

southwest to the northeast that agrees with the annual mean precipitation fields (Fig. 1f). The 456 

climatological values in Fig. 10a of RX1day range from 75 mm to 120 mm. The area-averaged evolution 457 

of RX1day in Fig. 10b indicates that maximum 1-day precipitation events have increased from 1970 to 458 

about 2000, declining slightly since mid-2000s. Note the large dispersion in the time series of all stations 459 

(thin lines) that suggests a large spatial and temporal variability in intense precipitation events. 460 

Particularly, NEA exhibits high interannual variability in intense precipitation events as shown by the 461 

area-averaged time series of RX1day in Fig. 10b. The more intense events tend to occur during El Niño 462 

years (e.g., 1998, 2002). Precipitation events during La Niña years (e.g., 1989, 2008) do not achieve the 463 

same intensity. Table 4 presents ENSO-range periodicities for RX1day (a cycle of 3.6 years accounting 464 

for 27% of its variance) and for RX5day (a noticeable 2.5-yr mode that explains 35% of the total index 465 

variance). According to Fig. 10c, the annual maximum 1-day precipitation amounts present no definite 466 

pattern of change, perhaps due to the fact that precipitation is highly variable in this region.  467 

The simple daily intensity index presents the highest values in the wettest portion of NEA, i.e. 468 

towards northeast (Fig. 10d). Although the SSA method does not extract trends with statistical 469 

significance for the area-averaged SDII time series (Fig. 10e), the 10-yr moving averages series shows 470 

that precipitation intensity has increased since the early 1970s to the present. Consistently, Fig. 10f 471 

indicates that the increase occurred in the whole region, with 31 out of 36 stations showing positive 472 

trends (11 of them significant at least at a 95% confidence level). The average change is about 1 473 
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mm/day in the last 50 years (see the time series of the area-averaged 10-yr moving average in Fig. 10e), 474 

with some areas showing increases of up to 1 mm/day per decade (see Fig. 10f). As in the case of 475 

RX1day index, the high dispersion in the 10-yr moving averages time series of all stations (Fig. 10e) 476 

indicates that the changes in precipitation intensity are modulated by large spatiotemporal variability. 477 

In particular, Table 4 shows that SDII is strongly influenced by an interannual variability cycle of 5 years 478 

that explains 35% of its variance. 479 

Table 4. Summary of the main variability modes of precipitation-related extremes found with SSA. 480 

SSA Results of Precipitation-based Indices 

 Index Index Name Components 
Trend or Dominant 

Period (year/cycle) 

Explained 

variance (%) 

In
te

n
si

ty
 

RX1day 
Max 1-day 

precipitation 
T-PC1 and T-PC2 3.6 27 

RX5day 
Max 5-day 

precipitation 
T-PC1 and T-PC2 2.5 35 

SDII 
Simple daily 

intensity index 
T-PC1 and T-PC2 5 35 

D
u

ra
ti

o
n

 

CWD 
Consecutive wet 

days 
No significant modes 

CDD 
Consecutive dry 

days 
No significant modes 
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Fig. 10: Intense precipitation climate extremes characterized by the annual maximum 1-day 481 

precipitation amount (RX1day; a-c) and the simple daily intensity index (SDII, d-f). Left panels (a, d): 482 

climatological mean values in the 1963-2013 period. Middle panels (b, e): the temporal evolution of 483 

the anomalies of the area-averaged indices and their trends. Right panels (c, f): the spatial 484 

distribution of linear trends. Green colors indicate a shift toward wetter conditions wile brown colors 485 

toward drier conditions. Station highlighted with a black dot indicate a significant linear trend, at 486 

least at the 95% confidence level. The definition of each index is given in Table 2. The units of each 487 

index is shown in brackets. 488 
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5.2 Duration of wet and dry spells 489 

Figure 11 presents the maximum annual duration of dry and wet spells as characterized by the 490 

consecutive dry/wet days indices (CDD and CWD; see Table 2 for definitions). It is noted that wet spells 491 

refer to precipitation events and do not consider hydrological aspects (longer term flooding) due to 492 

recurring non-consecutive wet spells. 493 

 The climatology in Fig. 11a reveals a longitudinal spatial gradient ranging from 20-30 494 

consecutive dry days in the east and increasing westwards to almost 50 days. This spatial gradient 495 

agrees with the precipitation climatology field (see Fig. 1f). Figs. 11b and 11c indicate that dry spell 496 

duration has increased in recent decades. Fig. 11b shows a continuous increase of dry spell duration 497 

over the whole region since the 1970s (see the time series of the area-averaged 10-yr moving average), 498 

also influenced by a high interannual variability. Fig. 11c shows a homogeneous pattern of change with 499 

27 stations with positive trends (75% of the total observed stations) increasing the duration of dry spells 500 

by 1 to 5 dry days per decade. Notably, the largest increases occurred towards the north, where 5 501 

locations have positive trends that exceed the confidence level of 95%. 502 

Characteristics of the wet spells presented in Figs. 11d-e show that their duration is shorter 503 

than for dry spells: wet spells tend to last 4 to 5 days in most of the study region, although up to 7 504 

consecutive wet days can occur towards the rainiest northeastern sector (Fig. 11d). Fig. 11e shows high 505 

interannual variability of wet spell anomalies with no noticeable trend. As seen in Fig 11f, the spatial 506 

pattern of trends lacks adequate information, with few non-significant trends and the rest having no 507 

changes (and thus not plotted). 508 
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Fig. 11. Duration of wet and dry spells characterized by the annual consecutive dry days (CDD; a-c) 509 

and the consecutive wet days (CWD, d-f). Left panels (a, d): climatological mean values in the 1963-510 

2013 period. Middle panels (b, e): the temporal evolution of the anomalies of the area-averaged 511 

indices and their trends. Right panels (c, f): the spatial distribution of linear trends computed in 512 

percentage units as the ratio between the linear trend in the 51 years analyzed and the temporal 513 

average in the same period for each station. Green colors indicate a shift toward wetter conditions 514 

wile brown colors toward drier conditions. Station highlighted with a black dot indicate a significant 515 

linear trend, at least at the 95% confidence level. The definition of each index is given in Table 2. The 516 

units of each index is shown in brackets. 517 
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5.3 Precipitation-related extremes in reanalyses 518 

The ability of the global reanalyses to represent precipitation-related extremes is evaluated for 519 

the annual maximum consecutive 5-day precipitation amount (RX5day) and the maximum annual 520 

number of consecutive dry days (CDD). RX5day is similar to RX1day discussed in section 5.1, with the 521 

only difference that it considers amounts in five days instead of one, thus allowing for more stable 522 

results. 523 

 

5.3.1 Maximum 5-day precipitation amount (RX5day) 524 

According to Fig. 12a, the observed climatology of RX5day (circles) presents a southwest-525 

northeast gradient that ranges from 125 mm to 200 mm with high spatial variability. Both reanalysis 526 

climatologies depict a smoothed version of the observed spatial variability. However, the reanalyses 527 

reproduce the temporal variability of the observed RX5day, achieving correlation coefficients close to 528 

0.65. Yet, there are periods (1998-2000) in which large departures are found. The time series show that 529 

ERA-Interim and NCEP2 underestimate the time evolution of area-averaged RX5day by about 16-18 530 

mm, which represents relative errors of about 10-12% with respect to the area-averaged observations. 531 

Figure 13 compares the spatial distribution of the RX5day for ERA-Interim and NCEP2 reanalyses 532 

against in-situ observations. Both reanalyses fail to represent the observed RX5day, as their correlations 533 

are lower than 0.2 in the whole region (Figs. 13a and 13b, respectively). The two reanalyses also 534 

present dry biases of more than 40 mm toward the north of the study region (Figs. 13c and 13d). The 535 

RMSE (Figs. 13e and 13f) are large throughout the study region, with more than 80% of the stations (30 536 

out of 36) presenting RMSE values higher than 60 days (see histograms below the maps in Figs. 13e and 537 

13f).  538 
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5.3.2 Consecutive dry days (CDD) 539 

Figure 12b shows that the observed climatology of CDD (circles) presents a strong east-west 540 

spatial gradient (discussed in section 5.2). Both reanalysis climatologies also display the east-west 541 

gradient (shades) but the ERA-Interim underestimates the observed spatial variability while NCEP2 542 

overestimates it. The area-averaged CDD time series have a similar evolution reaching correlation 543 

coefficients close to 0.7. Consistently with the spatial behavior, ERA-Interim underestimates the 544 

observed time variability with a mean bias error of 13 days (36% of the observed mean value in the 545 

whole period) while NCEP2 overestimates the temporal evolution of CDD reaching a mean bias error of 546 

2 days, which represents a 6% of the observed mean value. 547 

Figure 14 presents the evaluation of the CDD metrics, and a comparison of Fig. 14 and Fig. 13 548 

indicates that both reanalyses performs better for CDD than for RX5day. ERA-Interim reproduces the 549 

observed CDD with higher correlations than NCEP2, mainly toward the northern sector (Fig. 14a and 550 

14b). As shown by Figs. 14c-f, both reanalyses present the highest biases toward the driest east: RMSE 551 

acquires values higher than 20 days (Figs. 14e and 14f) but while ERA-Interim underestimates 552 

observations (Fig. 14c), NCEP2 overestimates them (Fig. 14d). The histograms in Figs. 14c and 14d show 553 

that ERA-Interim acquires frequent mean bias in the range -20 < MBE < -10 while NCEP2 most frequent 554 

errors are in the range 0 > MBE > 10, suggesting that the ERA-Interim underestimation is higher than 555 

the NCEP2 overestimation. 556 
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Fig. 12. Intense precipitation events characterized by the annual maximum 5-day precipitation 557 

amount (RX5day, a) and short-term droughts represented by the annual maximum consecutive 558 

dry days (CDD, b) represented by the ERA-interim and NCEP2 reanalyses for the period 1979-2011 559 

and compared with observations. Spatial distribution of mean climatology values are given in the 560 

first two panels while area-averaged time series in the third panel of each row. 561 
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Fig. 13. Spatial distribution of the correlation coefficients, the MBE and the RMSE for maximum 5-562 

day precipitation (RX5day) represented by the ERA-Interim and NCEP2 reanalyses for the period 563 

1979-2011. Histograms are provided below of each map.  564 
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Fig. 14. Spatial distribution of the correlation coefficients, the MBE and the RMSE for the annual 565 

maximum consecutive dry days (CDD) represented by the ERA-Interim and NCEP2 reanalyses for 566 

the period 1979-2011. Histograms are provided below of each map.  567 
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6. Discussion  568 

6.1 Changes in extreme events and potential impacts 569 

The results show that minimum-temperature extremes had a clear signal of nighttime warming 570 

due to a significant increase in warm nights and a concurrent significant decrease in cold nights. 571 

Maximum-temperature extremes also exhibited a daytime warming resulting from a significant increase 572 

in warm days and a significant decrease in cold days. While the minimum temperature warming seems 573 

to have been stabilizing in recent decades, the maximum temperature warming continues to rise. 574 

According to literature, these changes may have agricultural implications as the decrease in cold nights 575 

shortens crops' critical growth periods reducing wheat and barley yields (Magrin et al., 2009; García et 576 

al., 2015). On the other hand, the increase of warm days affect the critical growth periods of maize and 577 

sunflower in summer, while the decrease of cold days may reduce the flowering and yield of winter 578 

wheat (Magrin et al., 2012). 579 

The results also suggest that the region is experiencing longer and more frequent warm spells 580 

than cold spells. The longer duration of heat waves may have important impacts on the population, 581 

increasing their mortality risk by heat strokes and producing more frequent collapses of energy systems 582 

(Magrin et al., 2014). In agriculture, the yields of maize and sunflower can be reduced because their 583 

critical periods are very sensitive to the summer high temperatures (Rondanini et al., 2006; Mayer et 584 

al., 2012). 585 

The increased intensity of heavy precipitation events in the last decades over the whole NEA 586 

constitutes a growing risk for urban settlements where heavy rainfall may exceed the capacity of 587 

drainage systems, causing significant infrastructure losses and, in the most extreme cases, deaths 588 

(Barros et al., 2015; Lovino, 2015). Intense precipitation events in the predominantly flat agricultural 589 

plains lead to extensive waterlogging with important economic impacts due to loss of crops and 590 

decreased livestock productivity. While precipitation has increased, dry spells in recent decades have 591 
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tended to last longer, suggesting that more persistent short-term droughts may affect agriculture 592 

activities, mainly in the drier area towards the northwest. 593 

 

6.2 Large-scale climate factors and the changes and variability in NEA climate extremes 594 

The South American climate underwent a transition in the 1970s, linked to the 1976–77 global 595 

climate shift, which strongly affected the South American Monsoon System (Carvallo et al., 2011). It has 596 

been speculated that several large-scale climate-forcing factors could have combined to cause this 597 

change, including a cold-to-warm sea surface temperature shift in the tropical Pacific Ocean (Huang et 598 

al., 2005; Jacques-Coper and Garreaud, 2015) and a multidecadal cooling in the tropical Atlantic Ocean 599 

(Seager et al., 2010; Barreiro et al., 2014). This climate shift appears to have been a source of change for 600 

trends and variability in precipitation, river streamflow and temperature in several regions of South 601 

America (e.g., Marengo, 2004; Kayano et al., 2009; Castino et al., 2016). Agosta and Companucci (2008) 602 

reported that the wetter conditions could have been influenced by the 1976-1977 climate shift that 603 

reduced the cyclonic activity at mid-latitudes together with a stronger northerly flow, which brings in 604 

higher humidity levels from northeastern Argentina. In this context, our results suggesting that intense 605 

precipitation events and minimum temperature extremes experienced long-term increases since the 606 

1970s in northeastern Argentina, are in agreement with Cavalcanti et al. (2015) and Carril et al. (2016).  607 

Extremes of minimum temperature (cold and warm nights) showed a stabilization in their 608 

trends since the 1980s. Rusticucci et al. (2016) proposed that these trends could be influenced by a shift 609 

towards the west of the South Atlantic anticyclone together with an increase in the north component of 610 

the wind measured by the meridional wind at 925 hPa in central Argentina that occurred during 1970s 611 

and 1980s being stabilized during the 1990s and 2000s. 612 

Other changes seem to have occurred since the 2000s. This study shows that some of the 613 

observed increases in precipitation and minimum temperature extremes seem to have stabilized in 614 
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recent decades in northeastern Argentina. We showed that the magnitude of intense precipitation 615 

events appears to be stabilizing in the last decade or so. The stabilization of the long-term wetting trend 616 

has been discussed in recent years (e.g., Seager et al., 2010; Barreiro et al., 2014; Lovino et al., 2014). 617 

These authors suggested that a cold phase of the Atlantic Multidecadal Oscillation (AMO) may have 618 

favored wet anomalies in decadal time scales between 1970s and 2000s over NEA while the reversal in 619 

the wetting trend could be associated to a shifting toward a warm phase of the AMO (Li et al., 2018) 620 

that may have forced a long-term decrease in precipitation during the late 2000s.  621 

Our results suggest that the interannual variability significantly affects minimum-temperature 622 

and intense precipitation extremes in northeastern Argentina (in agreement with Rusticucci et al., 2012 623 

and Carril et. al, 2016). Interestingly, minimum-temperature extremes (including frost days) showed a 624 

significant interannual cycle of 4 years. Recently, Lovino et al. (2018) found that regional minimum 625 

temperature can be related to ENSO with a periodicity of roughly 4 years. It is well known that the 626 

number of frost days in northeastern Argentina is highly influenced by the ENSO phenomenon: less 627 

frost days are observed during El Niño years and more are found during La Niña years (Müller et al., 628 

2000; Müller et al., 2003). In consonance with that, our results suggest that nighttime temperature 629 

extreme events might be also affected by the ENSO in this frequency. There is much evidence that 630 

ENSO modulates the interannual variability of extreme precipitation events over northeastern 631 

Argentina (e.g., Haylock et al., 2006; Grimm and Tedeschi, 2009; Cavalcanti, 2012). Our results suggest 632 

that extreme values of the area-averaged time series of RX1day and RX5day are associated to ENSO 633 

conditions. Consistently, the main significant periodicities of the intense precipitation events of one day 634 

and five days (3.6 and 2.5 years) found in this study were also reported in the ENSO SST pattern (Moron 635 

et al., 1998; Lovino et al., 2018) and ENSO indices (e.g., Wolter and Timlin, 2011). 636 

 



46 

 

6.3 The skill of NCEP2 and ERA-Interim reanalyses to represent NEA climate extremes 637 

The ERA-Interim is a newer reanalysis that unlike the older NCEP2 includes assimilation of 638 

surface temperature observations. Our findings are in line with this information, as they show that ERA-639 

Interim exhibits greater ability to reproduce the spatial and temporal variability of summer days than 640 

NCEP2 over the study region. NCEP2 and ERA-Interim tend to represent maximum-temperature 641 

extremes (here characterized by summer days) better than minimum-temperature extremes (as 642 

represented by tropical nights and frost days). This result is consistent with Rusticucci and Kousky 643 

(2002) and Zaninelli et al. (2015) who showed similar differences between NCEP and ERA40. Both 644 

reanalyses represent the interannual variability of tropical nights and frost days, although with 645 

significant positive systematic errors for tropical nights even for the ERA-Interim that assimilates 646 

observed temperature. Still, NCEP2 fails to reproduce the spatial patterns of both summer days and 647 

tropical nights and both reanalysis have closer values among themselves than with observations. Frost 648 

days exhibit negative mean bias errors, which intriguingly are larger for ERA-Interim. In summary, while 649 

the reanalyses can reproduce the interannual variability of temperature-related climate extremes, 650 

magnitudes are off, particularly for tropical nights. 651 

Precipitation-related extreme events are more difficult to reproduce by reanalysis products. The 652 

two reanalyses were able to recognize the time evolution of area-averaged intense precipitation events 653 

in the last decades, but smooth out the spatial distribution of these events. The RX5day is represented 654 

with significant dry biases towards the north of the study region. These results agree with Boers et al. 655 

(2015), who reported that ERA-Interim fail to reproduce large convective systems in southeastern South 656 

America, and Silva et al. (2011) and Albuquerque de Almeida et al. (2018), who found that NCEP2 657 

presents dry biases and difficulties to simulate the intensity of precipitation. The two reanalyses 658 

recognized dry spells patterns as characterized by CDD, although NCEP2 tends to represent longer dry 659 

spells, and ERA-Interim shorter dry spells compared to observations. Thus, our results suggest that 660 

reanalyses products have limits that should be taken carefully into account if they are included in 661 
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studies that involve changes in climate extremes in northeastern Argentina, particularly for 662 

precipitation-related extremes.  663 

 

7. Concluding remarks 664 

This paper has investigated the variability and changes in daily climate extreme events during 665 

the last five decades in the fertile northeast region of Argentina. The extremes include warm and cold 666 

days and nights, temperature diurnal amplitude, frost days, heat and cold waves, intense precipitation 667 

events and dry and wet spells. The intensity, duration and frequency of temperature- and precipitation-668 

related climate extremes were studied using 15 indices of the core set of ETCCDI indices, selected 669 

according to their capacity to represent relevant extreme events in the study region. We also assessed 670 

the ability of the ERA-Interim and NCEP2 reanalyses to reproduce the observed variability of climate 671 

extremes during the period 1979-2011. 672 

The changes in daily temperature extremes reveal a trend towards warmer conditions over 673 

northeastern Argentina, which is consistent with what has been observed in other regions of the world 674 

(e.g., Seneviratne et al., 2012; Donat et al., 2013). This warming is revealed as an increase of warm days 675 

and warm nights, as well as a decrease of cold days and cold nights. Although the number of cold nights 676 

declined following the general warming trend in the region, the number has not changed significantly 677 

since 1980. The number of frost days exhibits large interannual and decadal variability without 678 

noticeable trends. The diurnal amplitude of temperature in winter has been increasing since about 679 

2000, possibly as a result of the decrease in cold days, i.e., those days with maximum temperature 680 

lesser than the 10th percentile, and despite the lack of changes in the number of cold nights. 681 

Heat and cold waves also reflect the general warming in NEA. Firstly, heat waves almost double 682 

the frequency and duration of cold waves. Second, during recent decades heat waves have tended to 683 

increase their duration and cold waves tended to be less persistent in time. The occurrence of longer 684 

heat waves is also related to changes in precipitation features noted in the trend towards longer dry 685 
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spells. These results agree with Seneviratne et al. (2012) who showed that the longer persistence of dry 686 

days during warm seasons contributes to higher temperatures and more extended duration of heat 687 

waves. Our results showed that heat waves are more frequent and persistent towards the west, where 688 

dry spells persist longer, with events reaching up to 50 days without rain. 689 

Daily precipitation intensities in the range of 13-20 mm day-1 are common in NEA. However, in 690 

occasions, extreme precipitation events can exceed 100 mm in one day and 200 mm in five days, 691 

particularly towards the wetter northeast. Our results show that intense precipitation events are highly 692 

influenced by interannual variability and, although no significant trends have been found with the SSA 693 

method, a steady increase of mean intensity values occurred since 1970. Since the region is mostly flat 694 

and has several important rivers, the increased intensity of extreme precipitation events has led to 695 

severe floods affecting agriculture and human settlements. The annual maximum amount of 1-day and 696 

5-day precipitation events also increased since 1970, although it seems to be stabilizing in recent years, 697 

as discussed above. The observed high variability is influenced by frequent and intense mesoscale 698 

convective systems and convective storms (Zipser et al., 2006; Rasmussen et al., 2016) that cause 699 

extreme precipitation events everywhere in the region. The prevalence for few days of convective 700 

systems and convective storms also explains the short duration of consecutive wet days. Wet spells do 701 

not persist for more than 5-6 days in average. However, during those days large amounts of 702 

precipitation can accumulate leading to severe floods (Cavalcanti, 2012). 703 

Finally, the ERA-Interim and NCEP2 reanalyses have different degrees of success in representing 704 

the observed extreme temperature and precipitation events. ERA-Interim can recognize the evolution 705 

of temperature extremes as number of summer days and tropical nights in time and space although 706 

with biases in magnitude. NCEP2 has a similar behavior for the area-averaged time evolution, but poor 707 

correlations are found at individual stations.  708 

The two reanalyses represent extreme precipitation events with large biases, which are 709 

particularly noticeable when looking at the performance locally at each station. Although both 710 
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reanalyses tend to recognize the variability of the area-averaged annual 5-day maximum precipitation 711 

in time, they underestimate the representation of their spatial distribution, mainly in the wetter 712 

northeast. Despite the large biases, the two reanalyses can represent better the short-term drought 713 

characterized by the annual maximum consecutive dry days than the extreme precipitation events 714 

represented by annual 5-day maximum precipitation. In general, reanalyses perform better for 715 

temperature extremes than for precipitation extremes. Although reanalyses would be expected to add 716 

information for climate extremes in areas of scarce observations like northeastern Argentina, they still 717 

need to be used with great caution and as a complement to observations. 718 
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